0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 InnermostUnusableRulesProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 7 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳12 CpxRNTS
↳13 InliningProof (UPPER BOUND(ID), 74 ms)
↳14 CpxRNTS
↳15 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 165 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 61 ms)
↳22 CpxRNTS
↳23 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 36 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 6 ms)
↳28 CpxRNTS
↳29 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 371 ms)
↳32 CpxRNTS
↳33 IntTrsBoundProof (UPPER BOUND(ID), 43 ms)
↳34 CpxRNTS
↳35 FinalProof (⇔, 0 ms)
↳36 BOUNDS(1, n^1)
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
f(f(a)) → f(g(n__f(n__a))) [1]
f(X) → n__f(X) [1]
a → n__a [1]
activate(n__f(X)) → f(activate(X)) [1]
activate(n__a) → a [1]
activate(X) → X [1]
f(f(a)) → f(g(n__f(n__a))) [1]
f(X) → n__f(X) [1]
f(X) → n__f(X) [1]
a → n__a [1]
activate(n__f(X)) → f(activate(X)) [1]
activate(n__a) → a [1]
activate(X) → X [1]
f(X) → n__f(X) [1]
a → n__a [1]
activate(n__f(X)) → f(activate(X)) [1]
activate(n__a) → a [1]
activate(X) → X [1]
f :: n__f:n__a → n__f:n__a n__f :: n__f:n__a → n__f:n__a a :: n__f:n__a n__a :: n__f:n__a activate :: n__f:n__a → n__f:n__a |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none
(c) The following functions are completely defined:
activate
a
f
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
n__a => 0
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 2 }→ f(X) :|: z = 1 + X, X >= 0
activate(z) -{ 2 }→ f(f(activate(X'))) :|: X' >= 0, z = 1 + (1 + X')
activate(z) -{ 2 }→ f(a) :|: z = 1 + 0
activate(z) -{ 1 }→ a :|: z = 0
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
a -{ 1 }→ 0 :|:
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 2 }→ f(f(activate(X'))) :|: X' >= 0, z = 1 + (1 + X')
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X'
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
{ f } { a } { activate } |
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f: runtime: ?, size: O(n1) [1 + z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f: runtime: O(1) [1], size: O(n1) [1 + z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f: runtime: O(1) [1], size: O(n1) [1 + z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f: runtime: O(1) [1], size: O(n1) [1 + z] a: runtime: ?, size: O(1) [0] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f: runtime: O(1) [1], size: O(n1) [1 + z] a: runtime: O(1) [1], size: O(1) [0] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f: runtime: O(1) [1], size: O(n1) [1 + z] a: runtime: O(1) [1], size: O(1) [0] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f: runtime: O(1) [1], size: O(n1) [1 + z] a: runtime: O(1) [1], size: O(1) [0] activate: runtime: ?, size: O(n1) [z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f: runtime: O(1) [1], size: O(n1) [1 + z] a: runtime: O(1) [1], size: O(1) [0] activate: runtime: O(n1) [10 + 4·z], size: O(n1) [z] |